skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ross, Lauren_N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The preference for simple explanations, known as the parsimony principle, has long guided the development of scientific theories, hypotheses, and models. Yet recent years have seen a number of successes in employing highly complex models for scientific inquiry (e.g., for 3D protein folding or climate forecasting). In this paper, we reexamine the parsimony principle in light of these scientific and technological advancements. We review recent developments, including the surprising benefits of modeling with more parameters than data, the increasing appreciation of the context-sensitivity of data and misspecification of scientific models, and the development of new modeling tools. By integrating these insights, we reassess the utility of parsimony as a proxy for desirable model traits, such as predictive accuracy, interpretability, effectiveness in guiding new research, and resource efficiency. We conclude that more complex models are sometimes essential for scientific progress, and discuss the ways in which parsimony and complexity can play complementary roles in scientific modeling practice. 
    more » « less
  2. Abstract Social scientists appeal to various “structures” in their explanations including public policies, economic systems, and social hierarchies. Significant debate surrounds the explanatory relevance of these factors for various outcomes such as health, behavioral, and economic patterns. This paper provides a causal account of social structural explanation that is motivated by Haslanger (2016). This account suggests that social structure can be explanatory in virtue of operating as a causal constraint, which is a causal factor with unique characteristics. A novel causal framework is provided for understanding these explanations–this framework addresses puzzles regarding the mysterious causal influence of social structure, how to understand its relation to individual choice, and what makes it the main explanatory (and causally responsible) factor for various outcomes. 
    more » « less
  3. Abstract Recent philosophical work on causation has focused on distinctions across types of causal relationships. This paper argues for another distinction that has yet to receive attention in this work. This distinction has to do with whether causal relationships have “material continuity,” which refers to the reliable movement of material from cause to effect. This paper provides an analysis of material continuity and argues that causal relationships with this feature (1) are associated with a unique explanatory perspective, (2) are studied with distinct causal investigative methods, and (3) provide different types of causal control over their effects. 
    more » « less